[SAS6.02] 1章目次 (2018/07/16 9:07)

1章 ゲーム機のインタフェース	1-2
1.1 物理的インタフェース	
1.1.1 デイジーチェイン	
1.1.2 スマートインタフェースボード	1-3
1.2 論理インタフェース	1-3
121 ウェイクアップモード	1-3

SECTION 1 GAMING MACHINE INTERFACE	1章 ゲーム機のインタフェース
Section 1 details the physical and logical interface required for implementing SAS communications between a gaming machine and host.	この章ではゲーム機とホスト間で SAS 通信機能を実 装するために必要な物理的および論理的インタフェ ースについて説明する。
1.1 Physical Interface	1.1 物理的インタフェース
The gaming machine can be interfaced to the host by two methods.	ゲーム機は 2 つの方法でホストとインタフェースする。
One method involves interfacing each gaming machine to a fiber tap board.	そのひとつは各ゲーム機をファイバータップボードと インタフェースする方法である。
The fiber tap boards can be daisy chained together to connect multiple gaming machines to a single host data collection unit.	ファイバータップボードは、複数ゲーム機と単一のホストデータ収集ユニットをデイジーチェインで接続する。
The second interface method involves connecting each gaming machine to a smart interface board (SMIB).	2番目は、各ゲーム機とスマートインタフェースボード (SMIB: Smart Interface Board)を接続するインタフェース方法である。
The SMIB polls the gaming machine to which it is connected and passes the information for that gaming machine to the host.	SMIB は接続しているゲーム機へポールを送信(ポーリング)して、当該ゲーム機の情報をホストへ引き渡す。
Both of these interface methods are detailed below.	この両方のインタフェース方法を、以下、説明する。
1.1.1 Daisy Chain	1.1.1 デイジーチェイン
Daisy chaining involves connecting multiple gaming machines to a single host via fiber tap boards.	デイジーチェイン方式は、複数ゲーム機を単一ホストとファイバータップボード経由で接続する。
In an example configuration, the gaming machine provides a four-wire communication cable and a two-wire AC power cable to an IGT fiber tap board (illustrated in Figure 1 of Appendix D).	構成例では、ゲーム機は 4 本ワイヤの通信ケーブルと2 本ワイヤの AC 電源ケーブルを IGT ファイバタップボードと接続している(付録 D、図-1)。
The communication cable is terminated with a Molex 70066 Series single-row connector (p/n 50-57-9404).	通信ケーブルの終端は Molex 70066 シリーズのシングルロウ コネクタと接続してある。
Table 1.1.1 a details the communication cable pin assignments.	表 1.1.1 は通信ケーブルのピン配置を示している。

1.1.1a 4線通信ケーブルのピン割り当て			
ピン	設定	説明	
1	Vdd	10 ボルト	
2	Rxd	EGM へのシリアルデータ入力	
3	Txd	EGM からのシリアルデータ出力	
4	Gnd	グランド	

A 3-wire power cable must provide UNSWITCHED 120V/220V AC power and may be terminated with an AMP connector (p/n 1-480701-0) or equivalent.

3 ワイヤ電源ケーブルは UNSWITCHED (無停電?) 120V/220V AC 電源を供給し、終端は AMP コネクタ(p/n 1-480701-0)または同等品と接続する。

1.1.1b 3線	電源ケーブル	のピン割り当て
ピン	設定	説明
1	Hot	120V/220V AC
2	Gnd	グランド
3	Com	コモン

1.1.2 Smart Interface Boards	1.1.2 スマートインタフェースボード
The alternative to daisy-chaining multiple gaming machines to a single host is to install a SMIB in each gaming machine to continuously obtain and update information for a single gaming machine and to relay this information to the host as needed.	複数ゲーム機をデイジーチェインで単一ホストと接続する方法の代替策が、ゲーム機ごとにSMIBをインストールして単一ゲーム機の情報を連続的に取得、更新し、必要時にホストへ中継する方法である。
Host manufacturers may develop their own SMIBs to communicate with gaming machines.	ホストのメーカーはゲーム機と通信する独自の SMIB (スマートインタフェースボード)を開発してよい。
For the IGT developed SMIB (i.e., PT95A player tracking device), a sample schematic showing the preferred and optional interface is illustrated in Figure 2 of Appendix D.	IGT の開発になる SMIB (PT95A プレイヤトラッキング装置)の配線図とインタフェースが付録 D、図-2 に示してある。
When interfacing gaming machines to a non-IGT SMIB, contact the SMIB manufacturer for interface specifications.	IGT 以外の SMIB とインタフェースするゲーム機のと き、インタフェース仕様については SMIB メーカーへ 照会すること。
1.2 Logical Interface	1.2 論理インタフェース
Communication between the host and gaming machines occurs through a serial data link operating at 19.2 KBaud in a "wakeup" mode.	ホストとゲーム機間は 19.2 KB の"ウェイクアップ"モードで動作するシリアルデータリンク接続を介して通信する。
The 11-bit data packet consists of one start bit, eight data bits, a ninth 'wakeup' bit, and one stop bit.	データパケットはスタートビット 1、データビット 8、9番目の'ウェイクアップ'ビット 1、ストップビット1の合計 11ビットで構成される。
1.2.1 Wakeup Mode	1.2.1 ウェイクアップモード
In wakeup mode, the host sets the 9th (wakeup) bit each time it sends the first byte of a message to the gaming machine.	ウェイクアップモード時、ホストはゲーム機へ送信するメッセージの最初のバイトの9番目のビット(ウェイクアップ)をセットする。
For all additional bytes in the message, this bit is cleared.	メッセージ内で後続するすべてのバイトは、この (ウェイクアップ) ビットはクリアされている。
Gaming machines use the wakeup bit to determine whether the received byte is the first byte of a new message or an additional byte of the current message.	ゲーム機はこのウェイクアップビットを調べて、受信したバイトが新着メッセージの先頭のバイトか、あるいは現在処理中のメッセージの追加バイトかを判定する。
Gaming machines clear the wakeup bit for all bytes	ゲーム機がホストへ返すレスポンスでは、ループブレ

	イク条件(4.2 「ループブレイク指示」参照)をレポート するときを除き、すべてのバイトのウェイクアップビット をクリアする。
Note: For UARTs/DUARTs that do not directly support wakeup mode, the parity bit can be used in place of the wakeup bit.	注: ウェイクアップを直接サポートしない UART (Universal Asynchronous Receiver Transmitter) /DUART のときは、ウェイクアップビットの代わりにパリティビットを使用できる。